CADENAS DE MARKOV
1. ¿Una cadena de Markov es?
Una cadena de Markov es una sucesión
de ensayos similares u observaciones en la cual cada ensayo tiene el mismo
número finito de resultados posibles y en donde la probabilidad de cada
resultado para un ensayo dado depende sólo del resultado del ensayo
inmediatamente precedente y no de cualquier resultado previo.
2. ¿Un proceso de Markov es?
Un proceso de Markov tiene la
propiedad de que la probabilidad de comportamiento futuro está totalmente
definida si se conoce el estado actual. El conocimiento de estados previos al
actual no altera la probabilidad de comportamiento futuro.
3. Los puntos en una cadena de Markov
son:
Exhaustivos y mutuamente excluyentes
4. La ocurrencia de un estado futuro es:
consecuencia de un estado anterior.
5. ¿Qué es transición?
Formalmente, el estado de un sistema
en un instante t es una variable cuyos valore solo pueden pertenecer a los
conjuntos de un estado de sistema. El sistema modelizado por la cadena, por lo
tanto, es una variable que cambia el valor en el tiempo, cambio al que llamamos
transición.
6. ¿Qué es un estado absorbente?
Un estado tal que si el proceso en el
permanecerá indefinidamente en este estado (ya que las probabilidades de pasar
a cualquiera de los otros son cero).
7. ¿Qué es una cadena ergòdica?
Una cadena de Markov es ergodica si todos sus estados son no nulos, no periódicos
y recurrentes. Las cadenas de Markov ergòdicas cumplen la siguiente propiedad:
El límite lımn→0 p(n)ij existe
y es independiente del estado inicial i. Lo denominaremos πj.